106. Definitive Proof for the Operation of Isotopically Sensitive Branching ('Metabolic Switching') in Fe^I-Mediated C-H Bond Activation in the Gas Phase

Short Communication

by Katrin Seemeyer, Tilmann Prüsse¹), and Helmut Schwarz*

Institut für Organische Chemie der Technischen Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin

Dedicated to Professor M. H. Zenk, Universität München, on the occasion of his 60th birthday

(21.IV.93)

Rigorous regio- and stereospecific labeling experiments are performed to demonstrate the operation of the previously suggested operation of 'isotopically sensitive branching' in Fe¹-mediated C—H bond activation. For the hexane-1,6-diol/Fe⁺-complex, it is shown that dehydrogenation involves specifically the central C(3)/C(4) position, and the study of the stereospecifically labeled D_L- and meso-[3,4-D₂]-isotopomers 1e and 1f demonstrates that dehydrogenation proceedes via two competing pathways (i.e. 'anti'- vs. 'syn'-route). The contribution of these routes to the product formation is – due to a kinetic isotope effect – controlled by the relative configuration at the labeled positions C(3)/C(4). For the D_L-form 1e, we estimate a ratio of 49:1 in favor of the 'anti'-route; due to an isotope effect, this ratio drops to 4.3:1 for the meso-form 1f.

While isotopically sensitive branching ('metabolic switching') is well-known to exist in enzymatic processes [1], cases in which deuterium isotopic perturbation determines the stereochemical course of a transition-metal-mediated process are scarce. Recently, it was demonstrated that the outcome of metal-complex-induced chain propagation in solution is subject to this effect [2], and a remarkable result was reported for the gas-phase C-H bond activation of bare Fe⁺ with octane-1,8-diol²). Based on extensive labeling studies, several unusual features were uncovered [4]. Most interesting is the finding that the configurations at C(4)/C(5) in [4,5-D₃]octane-1,8-diol, i.e. the D,L- and meso-forms, play a pivotal role in the dehydrogenation of the central C(4)/C(5) part. Two reactive conformations are involved: an 'anti'-conformation of the central C(4)/C(5) bond serves as a precursor to generate a trans-fused metallabicyclic intermediate, and the cis-fused counterpart is accessible from a 'syn'-conformation. Unexpected and unprecedented is the result, that the contribution of these two bicyclic intermediates to the product formation is controlled by the relative configuration at the labeled methylene positions C(4)/C(5). The quantitative analysis of the data was hampered, however, by the fact, that the Fe¹-mediated dehydrogenation of octane-1,8-diol did not exclusively involve the central C(4)/C(5) positions (80%); rather, the flexibility of the chelate is such that activation of the C(3)/C(4) or the equivalent C(5)/C(6) positions also takes place (20%) with the consequence that extensive algebraic corrections had to be made. Here, we report a clear-cut case which is not subject to this nuisance.

¹⁾ Present address: Schering AG, Müllerstrasse 170–178, D–13342 Berlin.

²) For a review on C-H/C-C bond activation by bare transition-metal ions, covering more than 700 references, see [3].

If a mixture of hexane-1,6-diol (1) and Fe(CO)₅ is bombarded with 100-eV electrons in the chemical-ionization source of a four-sector BEBE mass spectrometer³), the metastable ion (MI) mass spectrum (unimolecular decomposition) of B(1)E(1)-mass selected complexes 1-Fe⁺ reveals the formation of molecular hydrogen, H₂O, and olefins (C₂H₄, C₃H₆). From the study of the specifically labeled isotopomers 1a-f (*Table 1*), it follows that the olefins are formed in a straightforward manner; in contrast, H₂O loss is preceded by extensive exchange processes involving various sites of the hexane-1,6-diol ligand. These reactions will not be further discussed in the present context. Rather, we will confine ourselves to a discussion of the dehydrogenation reaction to which the concept of 'metabolic switching' applies.

The data given in *Table 1* allow to make the following comments: *i*) Molecular hydrogen originates *exclusively* from the central segment C(3)/C(4) (loss of H_2 from 1a, 1b, 1d, and elimination of D_2 from 1c). Therefore, we do not have to worry that the analysis of the stereoisomers 1e and 1f will be affected by contributions from 'side reactions'. *ii*) As expected from our previous study of the octane-1,8-diol/Fe⁺ system [4],

Table 1. Unimolecular Decomposition	of Fe	-Complexes of Hexane-1,6-diol	(1) and Its Isoto	pomers 1a-fa)

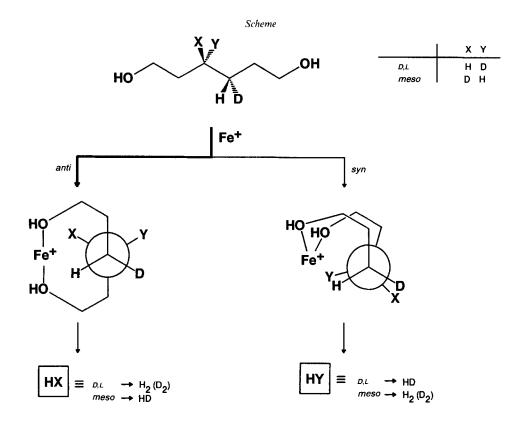
Table It Commorceatal Decemposition of Ic			Complexes of freshare 1,0 and (1) and 115 isotopomers 14 i						/			
Precursor		H ₂	HD	D ₂	H ₂ O	HDO	D ₂ O	C ₂ H ₄	$C_2H_2D_2$	C ₃ H ₆	C ₃ H ₅ D	C ₃ H ₄ D ₂
но	1	15	-	-	69	-	-	11	_	5	~	~
HO D OH	la	19	_	-	64	2	_	-	10	-	-	5
но В В ОН	1b	15	-	_	54	5	_	-	21	-	-	5
$HO \underbrace{\hspace{1cm} D \hspace{1cm} D}_{D \hspace{1cm} OH} OH$	lc	-	=	2	65	12	_	12	-	_	-	8
DO OD	1d	17	-	-	-	46	17	13	-	8	-	_
но О ОН	1e ^b)	9	0.3	1	67	5	-	11	-	_	6	-
HO OH	1f	2	6	0.1	69	5	-	11		-	6	-

a) Intensities are normalized to Σ neutral products = 100%.

b) 1e corresponds to the D,L-form.

³⁾ For a detailed description and operation of the machine, see [5]. Experimental details are described in [4] [6].

1f (meso)


Table 2. Te -Mediated De	enyurogenumen og 1	S,E and meso [2].	27.10114110 2,0 11111	
Precursor	H_2	HD	\mathbf{D}_2	
1e (D.L)	83	2	15	

18

1

Table 2. Fe¹-Mediated Dehydrogenation of D,L- and meso-[3,4-D₂]hexane-1,6-diol

18

a striking difference is noted for the isotope distribution for the losses of H_2 , HD, and D_2 from the two stereoisomers $\mathbf{1e}$ and $\mathbf{1f}$. From the re-normalized data (Table 2) in conjunction with the oversimplified mechanism (Scheme), we conclude from the ratio $(H_2 + D_2)/HD$ that, for the D,L-form $\mathbf{1e}$, 98% of the dehydrogenation proceeds via the 'anti'-route (Scheme) and only 2% via the 'syn'-path. For the meso-form $\mathbf{1f}$, however, the numbers are quite different with only 81% involving the 'anti'- and 19% proceeding via the 'syn'-path (estimated from the ratio $HD/(H_2 + D_2)$). This result is an immediate manifestation of an isotopically sensitive branching: for the meso-form $\mathbf{1f}$, any conceivable intermediate formed via the otherwise favored 'anti'-route will invariably lead to the generation of HD. Thus, due to the kinetic isotope effects (Table 1), the system 'bypasses' this channel and explores to a larger extent the alternative route, which is only disfavored by a factor of 4.3. The opposite situation holds true for the D,L-labeled isotopomer $\mathbf{1e}$. Here, the 'anti'-route has the option to undergo either loss of H_2 and D_2 (favoring the former by a factor of 5.53). Consequently, the need to an isotopically enforced switch to

populate the 'syn'-path is much less pronounced, and this path is indeed by a factor of 49 less favored than the former. In conclusion, the analysis of the present data lends full support to our previous conclusion [4] that 'metabolic switching', well-known to be operative in enzymatic hydrogen abstractions, has its counterpart in the Fe¹-mediated C-H bond activation in the gas phase.

Financial support of our work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is appreciated.

REFERENCES

- a) D. B. Northop, Biochemistry 1975, 14, 2644; b) G. T. Miwa, J. S. Walsh, A. Y. H. Lu, J. Biol. Chem. 1984, 259, 3000; c) N. Harada, G. T. Miwa, J. S. Walsh, A. Y. H. Lu, ibid. 1984, 259, 3005; K. S. Eble, J. H. Dawson, ibid. 1984, 259, 14389; e) R. E. White, J. P. Miller, L. V. Favreau, A. Bhattacharyya, J. Am. Chem. Soc. 1986, 108, 6024; f) J. P. Jones, K. R. Korukua, A. E. Rettie, W. F. Trager, ibid. 1986, 108, 7074; g) F. P. Guengerich, L. A. Peterson, R. H. Böcker, J. Biol. Chem. 1988, 263, 8176.
- [2] a) H. Krauledat, H. H. Brintzinger, Angew. Chem. Int. Ed. 1990, 29, 1417; b) W. E. Piers, J. E. Bercaw, J. Am. Chem. Soc. 1990, 112, 9406.
- [3] K. Eiler, H. Schwarz, Chem. Rev. 1991, 91, 1121.
- [4] T. Prüsse, A. Fiedler, H. Schwarz, Helv. Chim. Acta 1991, 74, 1127.
- [5] a) R. Srinivas, D. Sülzle, T. Weiske, H. Schwarz, Int. J. Mass Spectrom. Ion Processes 1991, 107, 369;
 b) R. Srinivas, D. Sülzle, W. Koch, C.H. DePuy, H. Schwarz, J. Am. Chem. Soc. 1991, 113, 5970.
- [6] T. Prûsse, Ph. D. Thesis, Technische Universität Berlin, D 83, 1991.